Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Anal Chem ; 96(11): 4430-4436, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38447029

RESUMEN

Traditional single-molecule fluorescence in situ hybridization (smFISH) methods for RNA detection often face sensitivity challenges due to the low fluorescence intensity of the probe. Also, short-lived autofluorescence complicates obtaining clear signals from tissue sections. In response, we have developed an smFISH probe using highly grafted lanthanide complexes to address both concentration quenching and autofluorescence background. Our approach involves an oligo PCR incorporating azide-dUTP, enabling conjugation with lanthanide complexes. This method has proven to be stable, convenient, and cost-effective. Notably, for the mRNA detection in SKBR3 cells, the lanthanide probe group exhibited 2.5 times higher luminescence intensity and detected 3 times more signal points in cells compared with the Cy3 group. Furthermore, we successfully applied the probe to image HER2 mRNA molecules in breast cancer FFPE tissue sections, achieving a 2.7-fold improvement in sensitivity compared to Cy3-based probes. These results emphasize the potential of time-resolved smFISH as a highly sensitive method for nucleic acid detection, free of background fluorescence interference.


Asunto(s)
Elementos de la Serie de los Lantanoides , Hibridación Fluorescente in Situ/métodos , ARN/análisis , ARN Mensajero/genética , Diagnóstico por Imagen
2.
J Mater Chem B ; 12(14): 3543-3555, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529560

RESUMEN

Intrauterine adhesions (IUAs) are common sequelae of cervical mucosa damage caused by uterine curettage. Establishing an anti-adhesion barrier between the damaged endometrium with a sustained-release drug capability and hence promoting endogenous regeneration of the endometrium is an available treatment for IUA. However, current therapy lacks long-term intracavitary residence, drug-delivery permeability, and tissue anti-adhesion to the endometrium. Here, we report the design of a Janus microneedle patch consisting of two layers: an adhesive inner layer with an exosomes-loaded microneedle, which endows the patch with a tissue adhesive capability as well as transdermal drug-delivery capability; and an anti-adhesion outer layer, which prevents the intrauterine membrane from postoperative adhesion. This Janus adhesive microneedle patch firmly adhered to uterine tissue, and sustainedly released ∼80% of the total loaded exosomes in 7 days, hence promoting the expression of vascular- and endothelial-related cell signals. Furthermore, the anti-adhesive layer of the microneedle patch exhibited low cell and protein adhesion performance. In rats, the microneedle patch successfully prevented uterine adhesions, improved endometrial angiogenesis, proliferation, and hormone response levels. This study provides a stable anti-adhesion barrier as well as efficient drug-release capability treatment for intrauterine adhesion treatment.


Asunto(s)
Exosomas , Enfermedades Uterinas , Humanos , Femenino , Ratas , Animales , Adhesivos/farmacología , Adhesivos/metabolismo , Enfermedades Uterinas/metabolismo , Enfermedades Uterinas/terapia , Endometrio/metabolismo , Proteínas/metabolismo
3.
JMIR Public Health Surveill ; 10: e44349, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412011

RESUMEN

BACKGROUND: COVID-19 screening is an effective nonpharmaceutical intervention for identifying infected individuals and interrupting viral transmission. However, questions have been raised regarding its effectiveness in controlling the spread of novel variants and its high socioeconomic costs. Therefore, the optimization of COVID-19 screening strategies has attracted great attention. OBJECTIVE: This review aims to summarize the evidence and provide a reference basis for the optimization of screening strategies for the prevention and control of COVID-19. METHODS: We applied a methodological framework for scoping reviews and the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. We conducted a scoping review of the present publications on the optimization of COVID-19 screening strategies. We searched the PubMed, Web of Science, and Elsevier ScienceDirect databases for publications up to December 31, 2022. English publications related to screening and testing strategies for COVID-19 were included. A data-charting form, jointly developed by 2 reviewers, was used for data extraction according to the optimization directions of the screening strategies. RESULTS: A total of 2770 unique publications were retrieved from the database search, and 95 abstracts were retained for full-text review. There were 62 studies included in the final review. We summarized the results in 4 major aspects: the screening population (people at various risk conditions such as different regions and occupations; 12/62, 19%), the timing of screening (when the target population is tested before travel or during an outbreak; 12/62, 19%), the frequency of screening (appropriate frequencies for outbreak prevention, outbreak response, or community transmission control; 6/62, 10%), and the screening and detection procedure (the choice of individual or pooled detection and optimization of the pooling approach; 35/62, 56%). CONCLUSIONS: This review reveals gaps in the optimization of COVID-19 screening strategies and suggests that a number of factors such as prevalence, screening accuracy, effective allocation of resources, and feasibility of strategies should be carefully considered in the development of future screening strategies.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Bases de Datos Factuales , Brotes de Enfermedades , Viaje
4.
Int J Biol Sci ; 20(4): 1180-1193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385083

RESUMEN

Chemoresistance is an obstacle of improving pancreatic cancer (PC) prognosis. However, the biological function of ISG15 in PC and whether it correlates with the resistance to chemotherapy are still unknown. Here, we aimed to reveal the clinical significance of ISG15 in PC and its regulatory mechanism in cancer progression and resistance to therapy. The level of ISG15, a protein involved in post-translational modifications, is elevated in PC tissues. Clinically, higher ISG15 expression correlates with higher PC grades, stronger resistance to treatment and poorer prognosis. Moreover, ISG15 promotes the proliferation, migration, invasion, colony formation of PC cells and resistance to Gemcitabine, a classic chemotherapeutics for PC, both in vitro and in vivo. ISG15 promotes progression and resistance to therapy in PC cells by binding to ATG7, reducing its degradation, and thereby leading to enhanced autophagy in PC cells. ISG15 may be used as both a potential diagnosis marker and sensitizer for chemotherapeutics such as Gemcitabine during PC intervention.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Humanos , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Citocinas/genética , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ubiquitinas/genética , Ubiquitinas/farmacología , Ubiquitinas/uso terapéutico
5.
Nat Commun ; 15(1): 831, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280857

RESUMEN

Transposon-associated ribonucleoprotein TnpB is known to be the ancestry endonuclease of diverse Cas12 effector proteins from type-V CRISPR system. Given its small size (408 aa), it is of interest to examine whether engineered TnpB could be used for efficient mammalian genome editing. Here, we showed that the gene editing activity of native TnpB from Deinococcus radiodurans (ISDra2 TnpB) in mouse embryos was already higher than previously identified small-sized Cas12f1. Further stepwise engineering of noncoding RNA (ωRNA or reRNA) component of TnpB significantly elevated the nuclease activity of TnpB. Notably, an optimized TnpB-ωRNA system could be efficiently delivered in vivo with single adeno-associated virus (AAV) and corrected the disease phenotype in a tyrosinaemia mouse model. Thus, the engineered miniature TnpB system represents a new addition to the current genome editing toolbox, with the unique feature of the smallest effector size that facilitate efficient AAV delivery for editing of cells and tissues.


Asunto(s)
Edición Génica , Tirosinemias , Ratones , Animales , Sistemas CRISPR-Cas/genética , Tirosinemias/genética , Tirosinemias/terapia , Mamíferos
6.
EMBO Mol Med ; 16(2): 334-360, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177537

RESUMEN

Cancer immunotherapies have achieved unprecedented success in clinic, but they remain largely ineffective in some major types of cancer, such as colorectal cancer with microsatellite stability (MSS CRC). It is therefore important to study tumor microenvironment of resistant cancers for developing new intervention strategies. In this study, we identify a metabolic cue that determines the unique immune landscape of MSS CRC. Through secretion of distal cholesterol precursors, which directly activate RORγt, MSS CRC cells can polarize T cells toward Th17 cells that have well-characterized pro-tumor functions in colorectal cancer. Analysis of large human cancer cohorts revealed an asynchronous pattern of the cholesterol biosynthesis in MSS CRC, which is responsible for the abnormal accumulation of distal cholesterol precursors. Inhibiting the cholesterol biosynthesis enzyme Cyp51, by pharmacological or genetic interventions, reduced the levels of intratumoral distal cholesterol precursors and suppressed tumor progression through a Th17-modulation mechanism in preclinical MSS CRC models. Our study therefore reveals a novel mechanism of cancer-immune interaction and an intervention strategy for the difficult-to-treat MSS CRC.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Microambiente Tumoral
7.
Mol Ther ; 31(12): 3520-3530, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37915172

RESUMEN

Otoferlin (OTOF) gene mutations represent the primary cause of hearing impairment and deafness in auditory neuropathy. The c.2485C>T (p. Q829X) mutation variant is responsible for approximately 3% of recessive prelingual deafness cases within the Spanish population. Previous studies have used two recombinant AAV vectors to overexpress OTOF, albeit with limited efficacy. In this study, we introduce an enhanced mini-dCas13X RNA base editor (emxABE) delivered via an AAV9 variant, achieving nearly 100% transfection efficiency in inner hair cells. This approach is aimed at treating OTOFQ829X, resulting in an approximately 80% adenosine-to-inosine conversion efficiency in humanized OtofQ829X/Q829X mice. Following a single scala media injection of emxABE targeting OTOFQ829X (emxABE-T) administered during the postnatal day 0-3 period in OtofQ829X/Q829X mice, we observed OTOF expression restoration in nearly 100% of inner hair cells. Moreover, auditory function was significantly improved, reaching similar levels as in wild-type mice. This enhancement persisted for at least 7 months. We also investigated P5-P7 and P30 OtofQ829X/Q829X mice, achieving auditory function restoration through round window injection of emxABE-T. These findings not only highlight an effective therapeutic strategy for potentially addressing OTOFQ829X-induced hearing loss but also underscore emxABE as a versatile toolkit for treating other monogenic diseases characterized by premature termination codons.


Asunto(s)
Sordera , Pérdida Auditiva Central , Pérdida Auditiva , Animales , Ratones , Edición Génica , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Mutación
8.
JCI Insight ; 8(23)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37917215

RESUMEN

Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.


Asunto(s)
Infecciones por Henipavirus , Virus Nipah , Vacunas Virales , Cricetinae , Animales , Humanos , Ratones , Mesocricetus , Infecciones por Henipavirus/prevención & control
9.
Cell Transplant ; 32: 9636897231193073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37737125

RESUMEN

Angiogenesis is strongly associated with ovarian hyperstimulation syndrome (OHSS) progression. Early growth response protein 1 (EGR1) plays an important role in angiogenesis. This study aimed to investigate the function and mechanism of EGR1 involved in OHSS progression. RNA-sequencing was used to identify differentially expressed genes. In vitro OHSS cell model was induced by treating KGN cells with human chorionic gonadotropin (hCG). In vivo OHSS model was established in mice. The expression levels of EGR1, SOX1, and VEGF were determined by Quantitative Real-Time polymerase chain reaction (qRT-PCR), Western blot, immunofluorescence staining, and immunochemistry assay. The content of VEGF in the culture medium of human granulosa-like tumor cell line (KGN) cells was accessed by the ELISA assay. The regulatory effect of EGR1 on SRY-box transcription factor 9 (SOX9) was addressed by luciferase reporter assay and chromatin immunoprecipitation. The ERG1 and SOX9 levels were significantly upregulated in granulosa cells from OHSS patients and there was a positive association between EGR1 and SOX9 expression. In the ovarian tissues of OHSS mice, the levels of EGR1 and SOX9 were also remarkedly increased. Treatment with hCG elevated the levels of vascular endothelial growth factor (VEGF), EGR1, and SOX9 in KGN cells. Silencing of EGR1 reversed the promoting effect of hCG on VEGF and SOX9 expression in KGN cells. EGR1 transcriptionally regulated SOX9 expression through binding to its promoter. In addition, administration of dopamine decreased hCG-induced VEGF in KGN cells and ameliorated the progression of OHSS in mice, which were companied with decreased EGR1 and SOX9 expression. EGR1 has a promoting effect on OHSS progression and dopamine protects against OHSS through suppression of EGR1/SOX9 cascade. Our findings may provide new targets for the treatment of OHSS.


Asunto(s)
Síndrome de Hiperestimulación Ovárica , Animales , Femenino , Humanos , Ratones , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/genética , Gonadotropina Coriónica/metabolismo , Dopamina , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Síndrome de Hiperestimulación Ovárica/genética , Síndrome de Hiperestimulación Ovárica/inducido químicamente , Síndrome de Hiperestimulación Ovárica/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
J Hazard Mater ; 459: 132187, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541119

RESUMEN

The in situ production of H2O2 by photocatalysis have shown a sustainable strategy for water remediation, but the peroxide evolution capacity are still unsatisfactory. Herein, we ingeniously design oxygen-doped carbon black/zinc indium sulfide (O-CB/ZnIn2S4) composites for photocatalytic production and activation of H2O2 to degrade antibiotics. The rich oxygen dopants and van der walls heterojunction between O-CB and ZnIn2S4 promoted charge transfer, oxygen adsorption and reduction for peroxide generation. The optimized O-CB/ZnIn2S4-2 composites exhibited ultrahigh H2O2 production rate (1985 µmol/g/h) in pure water (pH=7) without sacrificial reagents and aeration assistance, which was 2 times, 3 times, and 12 times higher than CB/ZnIn2S4-2, ZnIn2S4 and O-CB, respectively. Additionally, O-CB/ZnIn2S4-2 composites exhibited considerable amount of OH of 30 µmol/L in 60 min, which was originated from the reduction of innergenerate-H2O2 by photogenerated electrons and direct photolysis. The degradation and quenching experiments shows that the innergenerate-H2O2 contributed to the rapid degradation and deep mineralization of tetracycline antibiotics(tetracycline, oxytetracycline, chlortetracycline hydrochloride). Moreover, intermediates analysis and toxicity estimation further confirm the significant mineralization and toxicity decrease during the degradation of oxytetracycline by O-CB/ZnIn2S4-2. The work provides deep insights into the crucial role of dopants and heterojunction in promoting H2O2 production and activation.


Asunto(s)
Antibacterianos , Oxitetraciclina , Peróxido de Hidrógeno , Oxígeno , Peróxidos
11.
Geospat Health ; 18(2)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37401413

RESUMEN

Few studies have considered the impacts of sample size and sample ratio of presence and absence points on the results of random forest (RF) testing. We applied this technique for the prediction of the spatial distribution of snail habitats based on a total of 15,000 sample points (5,000 presence samples and 10,000 control points). RF models were built using seven different sample ratios (1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and 4:1) and the optimal ratio was identified via the Area Under the Curve (AUC) statistic. The impact of sample size was compared by RF models under the optimal ratio and the optimal sample size. When the sample size was small, the sampling ratios of 1:1, 1:2 and 1:3 were significantly better than the sample ratios of 4:1 and 3:1 at all four levels of sample sizes (p<0.01) and there was no significant difference among the ratios of 1:1, 1:2 and 1:3 (p>0.05). The sample ratio of 1:2 appeared to be optimal for a relatively large sample size with the lowest quartile deviation. In addition, increasing the sample size produced a higher AUC and a smaller slope and the most suitable sample size found in this study was 2400 (AUC=0.96). This study provides a feasible idea to select an appropriate sample size and sample ratio for ecological niche modelling (ENM) and also provides a scientific basis for the selection of samples to accurately identify and predict snail habitat distributions.


Asunto(s)
Ecosistema , Bosques Aleatorios
13.
Protein Cell ; 14(6): 416-432, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285261

RESUMEN

Approximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ε4 allele copies were converted to the AD-neutral ε3 allele in human ε4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.


Asunto(s)
Apolipoproteína E4 , Citosina , Humanos , Apolipoproteína E4/genética , Mutación , Blastocisto , Heterocigoto , Edición Génica , Sistemas CRISPR-Cas
14.
One Health ; 16: 100514, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363215

RESUMEN

Influenza virus, with a global distribution, diverse animal host range and multiple virus subtypes, has caused several pandemics. To better prepare for the emergence of new subtypes and the possible threat of the next pandemic, the global status of animal influenza must be defined and documented. We created a global database of animal influenza events by searching scientific databases and the primary literature on animal influenza-related events up to and including 2016. The temporal, spatial and host distribution of animal influenza and the diversity of influenza subtypes in different regions were analyzed. A total of 70,472 records and 4712 events of animal influenza throughout the world were identified. Events involving subtypes H5N2, H7N7 and H7N9 were relatively constant, with a slow upward trend during the past decade. Asia was the region with the most clusters of events. Poultry was the main host reported in Asia and Africa, and wild birds in Europe and North America. We found that wild birds carried a very rich array of virus subtypes, a warning for the possible generation of reassortment viruses with pandemic potential. Influenza virus subtype diversity - a risk for virus reassortment - was greatest in Asia, North America and Europe. Our database provides a comprehensive overview of the historical and current status of animal influenza events throughout the world. Influenza surveillance needs to be strengthened in some countries and regions to prevent the emergence of new subtypes. Importantly, improvement of the global influenza surveillance system and structures to enable sharing of surveillance data is very much needed to prepare for the next pandemic.

15.
Artículo en Chino | MEDLINE | ID: mdl-37253514

RESUMEN

Objective:To compare the clinical value of visual analogue scale (VAS), Lebel scale and total nasal symptom scores (TNSS) in evaluating nasal allergen provocation test (NAPT). Methods:A total of 151 patients suspected of allergic rhinitis admitted to the Department of Otolaryngology-Head and Neck Surgery of our hospital from April 2020 to September 2020 were included, of which 76 were positive for house dust mites and 75 were negative for allergens. Nasal airway resistance(NAR) was measured by active anterior nasal manometry. Nasal symptoms were evaluated by VAS, Lebel and TNSS. House dust mite allergen was used for NAPT by spray method. An increase≥40% in NAR was used as the gold standard for objective evaluation of NAPT. ROC curves of VAS, Lebel and TNSS were drawn to compare the evaluation effectiveness of different subjective evaluation methods, and the optimal critical point of each ROC curve was obtained. Results:With NAR increased by ≥40% as the gold standard, the area under ROC curve of VAS was 0.884, and the sensitivity and specificity were 97.75% and 80.65%, respectively. The area under ROC curve of Lebel was 0.773, and the sensitivity and specificity were 68.54% and 75.81%, respectively. The area under ROC curve of TNSS was 0.792, and the sensitivity and specificity were 68.54% and 79.03%, respectively. There was no significant difference between Lebel and TNSS(P>0.05). The VAS differed significantly from Lebel and TNSS(P<0.05). The Kappa values of VAS, Lebel, TNSS and NAR were 0.803, 0.432 and 0.459, respectively. Conclusion:The VAS, Lebel, TNSS subjective scale and NAR are consistent in evaluating the efficacy of NAPT, with the VAS assessment showing highest consistency with NAR. As objective assessment instruments are not widely used in China, subjective assessment method could be adopted to evaluate the efficacy of NAPT in clinical practice, and VAS scale is recommended as a priority.


Asunto(s)
Alérgenos , Rinitis Alérgica , Animales , Humanos , Pruebas de Provocación Nasal/métodos , Rinitis Alérgica/diagnóstico , Nariz , Pyroglyphidae
16.
IEEE J Transl Eng Health Med ; 11: 252-260, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138592

RESUMEN

The accuracy of image segmentation is critical for quantitative analysis. We report a lightweight network FRUNet based on the U-Net, which combines the advantages of Fourier channel attention (FCA Block) and Residual unit to improve the accuracy. FCA Block automatically assigns the weight of the learned frequency information to the spatial domain, paying more attention to the precise high-frequency information of diverse biomedical images. While FCA is widely used in image super-resolution with residual network backbones, its role in semantic segmentation is less explored. Here we study the combination of FCA and U-Net, the skip connection of which can fuse the encoder information with the decoder. Extensive experimental results of FRUNet on three public datasets show that the method outperforms other advanced medical image segmentation methods in terms of using fewer network parameters and improved accuracy. It excels in pathological Section segmentation of nuclei and glands.


Asunto(s)
Núcleo Celular , Aprendizaje , Salarios y Beneficios , Semántica , Columna Vertebral
17.
Microbiol Res ; 272: 127388, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37141851

RESUMEN

The stability of SARS-CoV-2 for varying periods on a wide range of inanimate surfaces has raised concerns about surface transmission; however, there is still no evidence to confirm this route. In the present review, three variables affecting virus stability, namely temperature, relative humidity (RH), and initial virus titer, were considered from different experimental studies. The stability of SARS-CoV-2 on the surfaces of six different contact materials, namely plastic, metal, glass, protective equipment, paper, and fabric, and the factors affecting half-life period was systematically reviewed. The results showed that the half-life of SARS-CoV-2 on different contact materials was generally 2-10 h, up to 5 d, and as short as 30 min at 22 °C, whereas the half-life of SARS-CoV-2 on non-porous surfaces was generally 5-9 h d, up to 3 d, and as short as 4 min at 22 â„ƒ. The half-life on porous surfaces was generally 1-5 h, up to 2 d, and as short as 13 min at 22 °C. Therefore, the half-life period of SARS-CoV-2 on non-porous surfaces is longer than that on porous surfaces, and thehalf-life of the virus decreases with increasing temperature, whereas RH produces a stable negative inhibitory effect only in a specific humidity range. Various disinfection precautions can be implemented in daily life depending on the stability of SARS-CoV-2 on different surfaces to interrupt virus transmission, prevent COVID-19 infections, and avoid over-disinfection. Owing to the more stringent control of conditions in laboratory studies and the lack of evidence of transmission through surfaces in the real world, it is difficult to provide strong evidence for the efficiency of transmission of the contaminant from the surface to the human body. Therefore, we suggest that future research should focus on exploring the systematic study of the entire transmission process of the virus, which will provide a theoretical basis for optimizing global outbreak prevention and control measures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Temperatura , Textiles , Desinfección
18.
J Med Chem ; 66(11): 7605-7614, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248170

RESUMEN

Let-7a, a type of low-expressed microRNAs in cancer cells, has been investigated as a promising biomarker and therapeutic target for tumor suppression. Developing simple and sensitive detection methods for let-7a is important for cancer diagnosis and treatment. In this work, the hybridization chain reaction (HCR) was initiated by let-7a via two hairpin primers (H1 and H2). After the HCR, the remaining hairpin H1 was further detected by lateral flow assay (LFA) and electrochemical impedance spectroscopy. For LFA, biotin-modified H1(bio-H1) and free H2 were used for HCR. With the decrease of let-7a concentration, the color of T line gradually increased. As for electrochemical methods, the H1'-AuNP-modified electrode was used for detection of bio-H1 based on the difference of impedance (ΔRct) detected without and with different concentrations of let-7a participating in the HCR. This method could detect let-7a in the range of 10.0 fM and 1.0 nM with detection limits of 4.2 fM.


Asunto(s)
MicroARNs , Hibridación de Ácido Nucleico/métodos , Biotina , Biomarcadores , Técnicas Electroquímicas
19.
Innovation (Camb) ; 4(3): 100426, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37181228

RESUMEN

Methotrexate, etoposide, dexamethasone, and pegaspargase (MESA) with sandwiched radiotherapy is known to be effective for early-stage extranodal natural killer/T-cell lymphoma, nasal type (NKTCL). We explored the efficacy and safety of reduced-intensity, non-intravenous etoposide, dexamethasone, and pegaspargase (ESA) with sandwiched radiotherapy. This multicenter, randomized, phase III trial enrolled patients aged between 14 and 70 years with newly diagnosed early-stage nasal NKTCL from 27 centers in China. Patients were randomly assigned (1:1) to receive ESA (pegaspargase 2,500 IU/m2 intramuscularly on day 1, etoposide 200 mg orally, and dexamethasone 40 mg orally on days 2-4) or MESA (methotrexate 1 g/m2 intravenously on day 1, etoposide 200 mg orally, and dexamethasone 40 mg orally on days 2-4, and pegaspargase 2,500 IU/m2 intramuscularly on day 5) regimen (four cycles), combined with sandwiched radiotherapy. The primary endpoint was overall response rate (ORR). The non-inferiority margin was -10.0%. From March 16, 2016, to July 17, 2020, 256 patients underwent randomization, and 248 (ESA [n = 125] or MESA [n = 123]) made up the modified intention-to-treat population. The ORR was 88.8% (95% confidence interval [CI], 81.9-93.7) for ESA with sandwiched radiotherapy and 86.2% (95% CI, 78.8-91.7) for MESA with sandwiched radiotherapy, with an absolute rate difference of 2.6% (95% CI, -5.6-10.9), meeting the non-inferiority criteria. Per-protocol and sensitivity analysis supported this result. Adverse events of grade 3 or higher occurred in 42 (33.6%) patients in the ESA arm and 81 (65.9%) in the MESA arm. ESA with sandwiched radiotherapy is an effective, low toxicity, non-intravenous regimen with an outpatient design, and can be considered as a first-line treatment option in newly diagnosed early-stage nasal NKTCL.

20.
Adv Sci (Weinh) ; 10(17): e2206813, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37098587

RESUMEN

Catalytically inactive CRISPR-Cas13 (dCas13)-based base editors can achieve the conversion of adenine-to-inosine (A-to-I) or cytidine-to-uridine (C-to-U) at the RNA level, however, the large size of dCas13 protein limits its in vivo applications. Here, a compact and efficient RNA base editor (ceRBE) is reported with high in vivo editing efficiency. The larger dCas13 protein is replaced with a 199-amino acid EcCas6e protein, derived from the Class 1 CRISPR family involved in pre-crRNA processing, and conducted optimization for toxicity and editing efficiency. The ceRBE efficiently achieves both A-to-I and C-to-U base editing with low transcriptome off-target in HEK293T cells. The efficient repair of the DMD Q1392X mutation (68.3±10.1%) is also demonstrated in a humanized mouse model of Duchenne muscular dystrophy (DMD) after AAV delivery, achieving restoration of expression for gene products. The study supports that the compact and efficient ceRBE has great potential for treating genetic diseases.


Asunto(s)
Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne , Animales , Ratones , Humanos , Sistemas CRISPR-Cas/genética , ARN/genética , Células HEK293 , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...